Fabrication of ITO/Gold nanoparticle/RGD peptide Composites to Enhance Electrochemical Signals from Human Neural Stem Cells

نویسندگان

  • Tae-Hyung Kim
  • Waleed Ahmed El-said
  • Jeong-Woo Choi
چکیده

Gold nanoparticles (GNP) and RGD peptide modified indium tin oxide (ITO) electrode was fabricated to enhance the electrochemical signals from neural stem cells (HB1.F3). Aminopropyltrimethoxylane (APTMS) was selfassembled on ITO electrode surface to immobilze GNP and its topological characteristics were confirmed by scanning electron microscopy (SEM). Thereafter, cysteine containing RGD peptide (RGD-MAP-C) was self-assembled on GNP immobilized surfaces via strong Au-S bond. Cells were seeded on the fabricated surface, and their electrochemical characteristics were analyzed by cyclic voltammetry (CV). As a result, ITO/GNP/RGD peptide composite was found to give highest redox signals compared to the bare ITO, ITO/RGD peptide and ITO/GNP substrate. Finally, the cell proliferation on different substrates were also analyzed by trypan blue assay to verify the effects of ITO/GNP/RGD peptide composites on human neural stem cells. Our newly fabricated substrate can be usefully applied for both electrochemical and optical study of stem cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nanoscale film fabrication of various peptides on neural stem cell chip.

Modification of peptide on the electrode surface is very important issue for achieving valuable information from cell chip. In this study, various kinds of cysteine-containing peptide were fabricated on the electrode surface to enhance the electrochemical signals, cell spreading, and proliferation of rat neural stem cells. Different kinds of lysine-rich and RGD peptides were self-assembled on t...

متن کامل

Three-Dimensional Graphene–RGD Peptide Nanoisland Composites That Enhance the Osteogenesis of Human Adipose-Derived Mesenchymal Stem Cells

Graphene derivatives have immense potential in stem cell research. Here, we report a three-dimensional graphene/arginine-glycine-aspartic acid (RGD) peptide nanoisland composite effective in guiding the osteogenesis of human adipose-derived mesenchymal stem cells (ADSCs). Amine-modified silica nanoparticles (SiNPs) were uniformly coated onto an indium tin oxide electrode (ITO), followed by grap...

متن کامل

O13: Human Neural Stem/Progenitor Cells Derived from Epileptic Human Brain in A Self-Assembling Peptide Nanoscaffold Attenuates Neuroinlammation in Traumatic Brain Injury in Rats

Traumatic brain injury (TBI) is a disruption in the brain functions following a head trauma. Cell therapy may provide a promising treatment for TBI. Human neural stem cells cultured in self-assembling peptide scaffolds have been proposed as a potential novel method for cell replacement treatment after TBI. In the present study, we accessed the effects of human neural stem/progenitor cells (hNS/...

متن کامل

3D graphene oxide-encapsulated gold nanoparticles to detect neural stem cell differentiation.

Monitoring of stem cell differentiation and pluripotency is an important step for the practical use of stem cells in the field of regenerative medicine. Hence, a new non-destructive detection tool capable of in situ monitoring of stem cell differentiation is highly needed. In this study, we report a 3D graphene oxide-encapsulated gold nanoparticle that is very effective for the detection of the...

متن کامل

Co-Transplantation of VEGF-Expressing Human Embryonic Stem Cell Derived Mesenchymal Stem Cells to Enhance Islet Revascularization in Diabetic Nude Mice

Background: Pancreatic islet transplantation has emerged as a promising treatment for type I diabetes. However, its efficacy is severely hampered due to poor islet engraftment and revascularization, which have been resulted to partially loss of transplanted islets. It has been shown that local delivery of vascular endothelial growth factor (VEGF) could accelerate transplanted islet revasculari...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011